Electronic Devices and Circuit Theory by Robert L. Boylestad and Louis Nashelsky

Download Electronic Devices and Circuit Theory by Robert L. Boylestad and Louis Nashelsky


Electronic Devices and Circuit Theory
Electronic Devices and Circuit Theory

About The Book:


Electronic Devices and Circuit Theory, Eleventh Edition, offers a complete, comprehensive survey, focusing on all the essentials you will need to succeed on the job. Setting the standard for nearly 30 years, this highly accurate text is supported by strong pedagogy and content that is ideal for new students of this rapidly changing field. This text is an excellent reference work for anyone involved with electronic devices and other circuitry applications, such as electrical and technical engineers.



Information The Book :

Title:  Electronic Devices and Circuit Theory (11th Edition).
Size: 26 Mb
Year: 2012
Edition: 11.
Pages: 944.
Language: English
Author: Robert L. Boylestad and Louis Nashelsky.


Book Content :


 CHAPTER 1: Semiconductor Diodes

 

1.2 Semiconductor Materials: Ge, Si, and GaAs 

1.3 Covalent Bonding and Intrinsic Materials 

1.4 Energy Levels 

1.5 n -Type and p -Type Materials 

1.6 Semiconductor Diode 

1.7 Ideal Versus Practical 

1.8 Resistance Levels 

1.9 Diode Equivalent Circuits 

1.10 Transition and Diffusion Capacitance 

1.11 Reverse Recovery Time 

1.12 Diode Specification Sheets 

1.13 Semiconductor Diode Notation 

1.14 Diode Testing 

1.15 Zener Diodes 

1.16 Light-Emitting Diodes
 

 CHAPTER 2: Diode Applications 

 
2.2 Load-Line Analysis 

2.3 Series Diode Configurations 

2.4 Parallel and Series–Parallel Configurations 

2.5 AND/OR Gates 

2.6 Sinusoidal Inputs; Half-Wave Rectification 

2.7 Full-Wave Rectification 

2.8 Clippers 

2.9 Clampers 

2.10 Networks with a dc and ac Source 

2.11 Z ener Diodes 

2.12 Voltage-Multiplier Circuits 

2.13 Practical Applications
 

 CHAPTER 3: Bipolar Junction Transistors 

 
3.2 Transistor Construction 

3.3 Transistor Operation 

3.4 Common-Base Configuration 

3.5 Common-Emitter Configuration 

3.6 Common-Collector Configuration 

3.7 Limits of Operation 

3.8 Transistor Specification Sheet 

3.9 Transistor Testing 

3.10 Transistor Casing and Terminal Identification 

3.11 Transistor Development
 

 CHAPTER 4: DC Biasing—BJTs  


4.2 Operating Point 

4.3 Fixed-Bias Configuration 

4.4 Emitter-Bias Configuration 

4.5 Voltage-Divider Bias Configuration 

4.6 Collector Feedback Configuration 

4.7 Emitter-Follower Configuration 

4.8 Common-Base Configuration 

4.9 Miscellaneous Bias Configurations 

4.10 Summary Table 

4.11 Design Operations 

4.12 Multiple BJT Networks 

4.13 Current Mirrors 

4.14 Current Source Circuits 

4.15 pnp Transistors 

4.16 Transistor Switching Networks 

4.17 Troubleshooting Techniques 

4.18 Bias Stabilization 

4.19 Practical Applications
 

 CHAPTER 5: BJT AC Analysis

 
5.2 Amplification in the AC Domain 

5.3 BJT Transistor Modeling 

5.4 The r e Transistor Model 

5.5 Common-Emitter Fixed-Bias Configuration 

5.6 Voltage-Divider Bias 

5.7 CE Emitter-Bias Configuration 

5.8 Emitter-Follower Configuration 

5.9 Common-Base Configuration 

5.10 Collector Feedback Configuration 

5.11 Collector DC Feedback Configuration 

5.12 Effect of R L and R s 

5.13 Determining the Current Gain 

5.14 Summary Tables 

5.15 Two-Port Systems Approach 

5.16 Cascaded Systems 

5.17 Darlington Connection 

5.18 Feedback Pair 

5.19 The Hybrid Equivalent Model 

5.20 Approximate Hybrid Equivalent Circuit 

5.21 Complete Hybrid Equivalent Model 

5.22 Hybrid p Model 

5.23 Variations of Transistor Parameters 

5.24 Troubleshooting 

5.25 Practical Applications
 

 CHAPTER 6: Field-Effect Transistors

 

6.2 Construction and Characteristics of JFETs 

6.3 Transfer Characteristics 

6.4 Specification Sheets (JFETs) 

6.5 Instrumentation 

6.6 Important Relationships 

6.7 Depletion-Type MOSFET 

6.8 Enhancement-Type MOSFET 

6.9 MOSFET Handling 

6.10 VMOS and UMOS Power and MOSFETs 

6.11 CMOS 

6.12 MESFETs 

6.13 Summary Table
 

 CHAPTER 7: FET Biasing  


7.2 Fixed-Bias Configuration 

7.3 Self-Bias Configuration 

7.4 Voltage-Divider Biasing 

7.5 Common-Gate Configuration 

7.6 Special Case VGSQ _ 0 V 

7.7 Depletion-Type MOSFETs 

7.8 Enhancement-Type MOSFETs 

7.9 Summary Table 

7.10 Combination Networks 

7.11 Design 

7.12 Troubleshooting 

7.13 p -Channel FETs 

7.14 Universal JFET Bias Curve 

7.15 Practical Applications
 

 CHAPTER 8: FET Amplifiers 

 
8.2 JFET Small-Signal Model 

8.3 Fixed-Bias Configuration 

8.4 Self-Bias Configuration 

8.5 Voltage-Divider Configuration 

8.6 Common-Gate Configuration 

8.7 Source-Follower (Common-Drain) Configuration 

8.8 Depletion-Type MOSFETs 

8.9 Enhancement-Type MOSFETs 

8.10 E-MOSFET Drain-Feedback Configuration 

8.11 E-MOSFET Voltage-Divider Configuration 

8.12 Designing FET Amplifier Networks 

8.13 Summary Table 

8.14 Effect of R L and R sig 

8.15 Cascade Configuration 

8.16 Troubleshooting 

8.17 Practical Applications
 

 CHAPTER 9: B JT and JFET Frequency Response 


9.2 Logarithms 

9.3 Decibels 

9.4 General Frequency Considerations 

9.5 Normalization Process 

9.6 Low-Frequency Analysis—Bode Plot 

9.7 Low-Frequency Response—BJT Amplifier with RL 

9.8 Impact of R s on the BJT Low-Frequency Response 

9.9 Low-Frequency Response—FET Amplifier 

9.10 Miller Effect Capacitance 

9.11 High-Frequency Response—BJT Amplifier 

9.12 High-Frequency Response—FET Amplifier 

9.13 Multistage Frequency Effects 

9.14 Square-Wave Testing
 

 CHAPTER 10: Operational Amplifiers  


10.2 Differential Amplifier Circuit 

10.3 BiFET, BiMOS, and CMOS Differential Amplifier Circuits 

10.4 Op-Amp Basics 

10.5 Practical Op-Amp Circuits 

10.6 Op-Amp Specifications—DC Offset Parameters 

10.7 Op-Amp Specifications—Frequency Parameters 

10.8 Op-Amp Unit Specifications 

10.9 Differential and Common-Mode Operation
 

 CHAPTER 11: Op-Amp Applications

 

11.1 Constant-Gain Multiplier 

11.2 Voltage Summing 

11.3 Voltage Buffer 

11.4 Controlled Sources 

11.5 Instrumentation Circuits 

11.6 Active Filters
 

 CHAPTER 12: Power Amplifiers 

 
12.1 Introduction—Definitions and Amplifier Types 

12.2 Series-Fed Class A Amplifier 

12.3 T ransformer-Coupled Class A Amplifier 

12.4 Class B Amplifier Operation 

12.5 Class B Amplifier Circuits 

12.6 Amplifier Distortion 

12.7 Power Transistor Heat Sinking 

12.8 Class C and Class D Amplifiers
 

 CHAPTER 13: Linear-Digital ICs 


13.2 Comparator Unit Operation 

13.3 Digital–Analog Converters 

13.4 Timer IC Unit Operation 

13.5 Voltage-Controlled Oscillator 

13.6 Phase-Locked Loop 

13.7 Interfacing Circuitry
 

 CHAPTER 14: Feedback and Oscillator Circuits 

 
14.1 Feedback Concepts 

14.2 Feedback Connection Types 

14.3 Practical Feedback Circuits 

14.4 Feedback Amplifier—Phase and Frequency Considerations 

14.5 Oscillator Operation 

14.6 Phase-Shift Oscillator 

14.7 Wien Bridge Oscillator 

14.8 Tuned Oscillator Circuit 

14.9 Crystal Oscillator 

14.10 Unijunction Oscillator
 

 CHAPTER 15: Power Supplies (Voltage Regulators) 


15.2 General Filter Considerations 

15.3 Capacitor Filter 

15.4 RC Filter 

15.5 Discrete Transistor Voltage Regulation 

15.6 IC Voltage Regulators 

15.7 Practical Applications 

15.8 Summary 

15.9 Computer Analysis
 

 CHAPTER 16: O ther Two-Terminal Devices 

 
16.2 Schottky Barrier (Hot-Carrier) Diodes 

16.3 Varactor (Varicap) Diodes 

16.4 Solar Cells 

16.5 Photodiodes 

16.6 Photoconductive Cells 

16.7 IR Emitters 

16.8 Liquid-Crystal Displays 

16.9 Thermistors 

16.10 Tunnel Diodes 

 CHAPTER 17: pnpn and Other Devices 

17.2 Silicon-Controlled Rectifier 

17.3 Basic Silicon-Controlled Rectifier Operation 

17.4 SCR Characteristics and Ratings 

17.5 SCR Applications 

17.6 Silicon-Controlled Switch 

17.7 Gate Turn-Off Switch 

17.8 Light-Activated SCR 

17.9 Shockley Diode 

17.10 Diac 

17.11 Triac 

17.12 Unijunction Transistor 

17.13 Phototransistors 

17.14 Opto-Isolators 

17.15 Programmable Unijunction Transistor








Post a Comment

0 Comments